Internal
problem
ID
[2096]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.6
THE
METHOD
OF
FROBENIUS
III.
Exercises
7.7.
Page
389
Problem
number
:
30
Date
solved
:
Tuesday, September 30, 2025 at 05:23:54 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*diff(diff(y(x),x),x)+x*(-2*x^2+1)*diff(y(x),x)-4*(2*x^2+1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]+x*(1-2*x^2)*D[y[x],x]-4*(1+2*x^2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(1 - 2*x**2)*Derivative(y(x), x) - (8*x**2 + 4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)