6.16.39 problem 35

Internal problem ID [2101]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS III. Exercises 7.7. Page 389
Problem number : 35
Date solved : Tuesday, September 30, 2025 at 05:24:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.028 (sec). Leaf size: 30
Order:=6; 
ode:=x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(11*x^2+5)*diff(y(x),x)+24*x^2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \left (1-2 x^{2}+3 x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (-144+432 x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{4}} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 27
ode=x^2*(1+x^2)*D[y[x],{x,2}]+x*(5+11*x^2)*D[y[x],x]+24*x^2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {1}{x^4}-1\right )+c_2 \left (3 x^4-2 x^2+1\right ) \]
Sympy. Time used: 0.458 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(x**2 + 1)*Derivative(y(x), (x, 2)) + 24*x**2*y(x) + x*(11*x**2 + 5)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} \left (- \frac {768 x^{5}}{175} + \frac {288 x^{4}}{35} - \frac {384 x^{3}}{35} + \frac {48 x^{2}}{5} - \frac {24 x}{5} + 1\right ) + O\left (x^{6}\right ) \]