Internal
problem
ID
[2108]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.1.
Page
471
Problem
number
:
section
9.1,
problem
3
Date
solved
:
Tuesday, September 30, 2025 at 05:24:08 AM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+diff(diff(diff(y(x),x),x),x)-7*diff(diff(y(x),x),x)-diff(y(x),x)+6*y(x) = 0; ic:=[y(0) = 5, D(y)(0) = -6, (D@@2)(y)(0) = 10, (D@@3)(y)(0) = -36]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,4}]+D[y[x],{x,3}]-7*D[y[x],{x,2}]-D[y[x],x]+6*y[x]==0; ic={y[0]==5,Derivative[1][y][0] ==-6,Derivative[2][y][0] ==10,Derivative[3][y][0]==-36}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*y(x) - Derivative(y(x), x) - 7*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {y(0): 5, Subs(Derivative(y(x), x), x, 0): -6, Subs(Derivative(y(x), (x, 2)), x, 0): 10, Subs(Derivative(y(x), (x, 3)), x, 0): -36} dsolve(ode,func=y(x),ics=ics)