6.17.4 problem section 9.1, problem 5(b) 2

Internal problem ID [2110]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number : section 9.1, problem 5(b) 2
Date solved : Tuesday, September 30, 2025 at 05:24:09 AM
CAS classification : [[_3rd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \\ y^{\prime }\left (1\right )&=1 \\ y^{\prime \prime }\left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.028 (sec). Leaf size: 14
ode:=x^3*diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+6*y(x) = 0; 
ic:=[y(1) = 0, D(y)(1) = 1, (D@@2)(y)(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {x^{3}-1}{3 x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 17
ode=x^3*D[y[x],{x,3}]-x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+6*y[x]==0; 
ic={y[1]==0,Derivative[1][y][1]==1,Derivative[2][y][1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^3-1}{3 x} \end{align*}
Sympy. Time used: 0.132 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) - x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + 6*y(x),0) 
ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 1, Subs(Derivative(y(x), (x, 2)), x, 1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{3} - \frac {1}{3 x} \]