Internal
problem
ID
[2164]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
17
Date
solved
:
Tuesday, September 30, 2025 at 05:24:31 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)+3*diff(y(x),x)-y(x) = exp(x)*(x^2+4*x+3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-2*D[y[x],{x,3}]+0*D[y[x],{x,2}]+3*D[y[x],x]-y[x]==Exp[x]*(3+4*x+x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x**2 - 4*x - 3)*exp(x) - y(x) + 3*Derivative(y(x), x) - 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x**2*exp(x)/3 - 4*x*exp(x)/3 - y(x)/3 - exp(x) + Derivative(y(x), x) - 2*Derivative(y(x), (x, 3))/3 + Derivative(y(x), (x, 4))/3 cannot be solved by the factorable group method