Internal
problem
ID
[2169]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
22
Date
solved
:
Tuesday, September 30, 2025 at 05:24:33 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-5*diff(diff(y(x),x),x)+4*y(x) = exp(x)*(-3*x^2+x+3); dsolve(ode,y(x), singsol=all);
ode=1*D[y[x],{x,4}]+0*D[y[x],{x,3}]-5*D[y[x],{x,2}]-0*D[y[x],x]+4*y[x]==Exp[x]*(3+x-3*x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x**2 - x - 3)*exp(x) + 4*y(x) - 5*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)