Internal
problem
ID
[2175]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
28
Date
solved
:
Tuesday, September 30, 2025 at 05:24:36 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-7*diff(diff(diff(y(x),x),x),x)+18*diff(diff(y(x),x),x)-20*diff(y(x),x)+8*y(x) = exp(2*x)*(-5*x^2-8*x+3); dsolve(ode,y(x), singsol=all);
ode=1*D[y[x],{x,4}]-7*D[y[x],{x,3}]+18*D[y[x],{x,2}]-20*D[y[x],x]+8*y[x]==Exp[2*x]*(3-8*x-5*x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((5*x**2 + 8*x - 3)*exp(2*x) + 8*y(x) - 20*Derivative(y(x), x) + 18*Derivative(y(x), (x, 2)) - 7*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)