Internal
problem
ID
[2179]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
32
Date
solved
:
Tuesday, September 30, 2025 at 05:24:38 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x)+diff(y(x),x)-2*y(x) = -exp(x)*((4*x^2+5*x+9)*cos(2*x)-(-3*x^2-5*x+6)*sin(2*x)); dsolve(ode,y(x), singsol=all);
ode=1*D[y[x],{x,3}]-2*D[y[x],{x,2}]+1*D[y[x],x]-2*y[x]==Exp[2*x]*((9+5*x+4*x^2)*Cos[2*x]-(6-5*x-3*x^2)*Sin[2*x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(((3*x**2 + 5*x - 6)*sin(2*x) + (4*x**2 + 5*x + 9)*cos(2*x))*exp(x) - 2*y(x) + Derivative(y(x), x) - 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)