Internal
problem
ID
[2187]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
40
Date
solved
:
Tuesday, September 30, 2025 at 05:24:44 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+6*diff(diff(diff(y(x),x),x),x)+13*diff(diff(y(x),x),x)+12*diff(y(x),x)+4*y(x) = exp(-x)*((4-x)*cos(x)-(5+x)*sin(x)); dsolve(ode,y(x), singsol=all);
ode=1*D[y[x],{x,4}]+6*D[y[x],{x,3}]+13*D[y[x],{x,2}]+12*D[y[x],x]+4*y[x]==Exp[-1*x]*((4-x)*Cos[x]-(5+x)*Sin[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(((x - 4)*cos(x) + (x + 5)*sin(x))*exp(-x) + 4*y(x) + 12*Derivative(y(x), x) + 13*Derivative(y(x), (x, 2)) + 6*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)