Internal
problem
ID
[2194]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
47
Date
solved
:
Tuesday, September 30, 2025 at 05:24:51 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-8*diff(diff(diff(y(x),x),x),x)+26*diff(diff(y(x),x),x)-40*diff(y(x),x)+25*y(x) = exp(2*x)*(3*cos(x)-(1+3*x)*sin(x)); dsolve(ode,y(x), singsol=all);
ode=1*D[y[x],{x,4}]-8*D[y[x],{x,3}]+26*D[y[x],{x,2}]-40*D[y[x],x]+25*y[x]==Exp[2*x]*(3*Cos[1*x]-(1+3*x)*Sin[1*x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(((3*x + 1)*sin(x) - 3*cos(x))*exp(2*x) + 25*y(x) - 40*Derivative(y(x), x) + 26*Derivative(y(x), (x, 2)) - 8*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)