Internal
problem
ID
[2196]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
49
Date
solved
:
Tuesday, September 30, 2025 at 05:24:53 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+diff(y(x),x)-y(x) = 5*exp(2*x)+2*exp(x)-4*cos(x)+4*sin(x); dsolve(ode,y(x), singsol=all);
ode=1*D[y[x],{x,3}]-1*D[y[x],{x,2}]+1*D[y[x],x]-1*y[x]==5*Exp[2*x]+2*Exp[x]-4*Cos[x]+4*Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x) - 5*exp(2*x) - 2*exp(x) - 4*sin(x) + 4*cos(x) + Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)