Internal
problem
ID
[2198]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
51
Date
solved
:
Tuesday, September 30, 2025 at 05:24:54 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)-4*diff(diff(y(x),x),x)+9*diff(y(x),x)-10*y(x) = 10*exp(2*x)+20*exp(x)*sin(2*x)-10; dsolve(ode,y(x), singsol=all);
ode=1*D[y[x],{x,3}]-4*D[y[x],{x,2}]+9*D[y[x],x]-10*y[x]==10*Exp[2*x]+20*Exp[x]*Sin[2*x]-10; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-10*y(x) - 10*exp(2*x) - 20*exp(x)*sin(2*x) + 9*Derivative(y(x), x) - 4*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) + 10,0) ics = {} dsolve(ode,func=y(x),ics=ics)