Internal
problem
ID
[2206]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
59
Date
solved
:
Tuesday, September 30, 2025 at 05:25:00 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-4*diff(diff(diff(y(x),x),x),x)+7*diff(diff(y(x),x),x)-6*diff(y(x),x)+2*y(x) = exp(x)*(12*x-2*cos(x)+2*sin(x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-4*D[y[x],{x,3}]+7*D[y[x],{x,2}]-6*D[y[x],x]+2*y[x]==Exp[x]*(12*x-2*Cos[x]+2*Sin[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-12*x - 2*sin(x) + 2*cos(x))*exp(x) + 2*y(x) - 6*Derivative(y(x), x) + 7*Derivative(y(x), (x, 2)) - 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)