6.19.64 problem section 9.3, problem 64

Internal problem ID [2211]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undetermined Coefficients for Higher Order Equations. Page 495
Problem number : section 9.3, problem 64
Date solved : Tuesday, September 30, 2025 at 05:25:03 AM
CAS classification : [[_3rd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} \left (1+x \right ) \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 33
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+3*diff(y(x),x)-y(x) = (1+x)*exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (x^{4}+4 x^{3}+\left (24 c_3 +3\right ) x^{2}+24 c_2 x +24 c_1 \right ) {\mathrm e}^{x}}{24} \]
Mathematica. Time used: 0.006 (sec). Leaf size: 37
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+3*D[y[x],x]-1*y[x]==Exp[x]*(1+x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{24} e^x \left (x^4+4 x^3+24 c_3 x^2+24 c_2 x+24 c_1\right ) \end{align*}
Sympy. Time used: 0.173 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x - 1)*exp(x) - y(x) + 3*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + x \left (C_{3} + \frac {x^{2}}{24} + \frac {x}{6}\right )\right )\right ) e^{x} \]