Internal
problem
ID
[2224]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.4.
Variation
of
Parameters
for
Higher
Order
Equations.
Page
503
Problem
number
:
section
9.4,
problem
11
Date
solved
:
Tuesday, September 30, 2025 at 05:25:12 AM
CAS
classification
:
[[_3rd_order, _exact, _linear, _nonhomogeneous]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = x^2; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + x**2*Derivative(y(x), (x, 2)) - x**2 - 2*x*Derivative(y(x), x) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)