Internal
problem
ID
[2233]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.4.
Variation
of
Parameters
for
Higher
Order
Equations.
Page
503
Problem
number
:
section
9.4,
problem
32
Date
solved
:
Tuesday, September 30, 2025 at 05:25:17 AM
CAS
classification
:
[[_high_order, _exact, _linear, _nonhomogeneous]]
With initial conditions
ode:=4*x^4*diff(diff(diff(diff(y(x),x),x),x),x)+24*x^3*diff(diff(diff(y(x),x),x),x)+23*x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 6*x; ic:=[y(1) = 2, D(y)(1) = 0, (D@@2)(y)(1) = 4, (D@@3)(y)(1) = -37/4]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=4*x^4*D[y[x],{x,4}]+24*x^3*D[y[x],{x,3}]+23*x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==6*x; ic={y[1]==2,Derivative[1][y][1]==0,Derivative[2][y][1]==4,Derivative[3][y][1]==-37/4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**4*Derivative(y(x), (x, 4)) + 24*x**3*Derivative(y(x), (x, 3)) + 23*x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) - 6*x + y(x),0) ics = {y(1): 2, Subs(Derivative(y(x), x), x, 1): 0, Subs(Derivative(y(x), (x, 2)), x, 1): 4, Subs(Derivative(y(x), (x, 3)), x, 1): -37/4} dsolve(ode,func=y(x),ics=ics)