Internal
problem
ID
[2251]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
10
Linear
system
of
Differential
equations.
Section
10.4,
constant
coefficient
homogeneous
system.
Page
540
Problem
number
:
section
10.4,
problem
13
Date
solved
:
Tuesday, September 30, 2025 at 05:25:28 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(t),t) = -2*y__1(t)+2*y__2(t)-6*y__3(t), diff(y__2(t),t) = 2*y__1(t)+6*y__2(t)+2*y__3(t), diff(y__3(t),t) = -2*y__1(t)-2*y__2(t)+2*y__3(t)]; dsolve(ode);
ode={D[ y1[t],t]==-2*y1[t]+2*y2[t]-6*y3[t],D[ y2[t],t]==2*y1[t]+6*y2[t]+2*y3[t],D[ y1[t],t]==-2*y1[t]-2*y2[t]+2*y3[t]}; ic={}; DSolve[{ode,ic},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y__1 = Function("y__1") y__2 = Function("y__2") y__3 = Function("y__3") ode=[Eq(2*y__1(t) - 2*y__2(t) + 6*y__3(t) + Derivative(y__1(t), t),0),Eq(-2*y__1(t) - 6*y__2(t) - 2*y__3(t) + Derivative(y__2(t), t),0),Eq(2*y__1(t) + 2*y__2(t) - 2*y__3(t) + Derivative(y__3(t), t),0)] ics = {} dsolve(ode,func=[y__1(t),y__2(t),y__3(t)],ics=ics)