6.22.13 problem section 10.5, problem 13

Internal problem ID [2266]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 10 Linear system of Differential equations. Section 10.5, constant coefficient homogeneous system II. Page 555
Problem number : section 10.5, problem 13
Date solved : Tuesday, September 30, 2025 at 05:25:36 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}y_{1} \left (t \right )&=-11 y_{1} \left (t \right )+8 y_{2} \left (t \right )\\ \frac {d}{d t}y_{2} \left (t \right )&=-2 y_{1} \left (t \right )-3 y_{2} \left (t \right ) \end{align*}

With initial conditions

\begin{align*} y_{1} \left (0\right )&=6 \\ y_{2} \left (0\right )&=2 \\ \end{align*}
Maple. Time used: 0.135 (sec). Leaf size: 28
ode:=[diff(y__1(t),t) = -11*y__1(t)+8*y__2(t), diff(y__2(t),t) = -2*y__1(t)-3*y__2(t)]; 
ic:=[y__1(0) = 6, y__2(0) = 2]; 
dsolve([ode,op(ic)]);
 
\begin{align*} y_{1} \left (t \right ) &= {\mathrm e}^{-7 t} \left (-8 t +6\right ) \\ y_{2} \left (t \right ) &= \frac {{\mathrm e}^{-7 t} \left (-32 t +16\right )}{8} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 30
ode={D[ y1[t],t]==-11*y1[t]+8*y2[t],D[ y2[t],t]==-2*y1[t]-3*y2[t]}; 
ic={y1[0]==6,y2[0]==2}; 
DSolve[{ode,ic},{y1[t],y2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {y1}(t)&\to e^{-7 t} (6-8 t)\\ \text {y2}(t)&\to e^{-7 t} (2-4 t) \end{align*}
Sympy. Time used: 0.056 (sec). Leaf size: 46
from sympy import * 
t = symbols("t") 
y__1 = Function("y__1") 
y__2 = Function("y__2") 
ode=[Eq(11*y__1(t) - 8*y__2(t) + Derivative(y__1(t), t),0),Eq(2*y__1(t) + 3*y__2(t) + Derivative(y__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[y__1(t),y__2(t)],ics=ics)
 
\[ \left [ y^{1}{\left (t \right )} = - 4 C_{2} t e^{- 7 t} - \left (4 C_{1} - C_{2}\right ) e^{- 7 t}, \ y^{2}{\left (t \right )} = - 2 C_{1} e^{- 7 t} - 2 C_{2} t e^{- 7 t}\right ] \]