7.6.1 problem 5(d)

Internal problem ID [2362]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 2.1, second order linear differential equations. Page 134
Problem number : 5(d)
Date solved : Tuesday, September 30, 2025 at 05:34:52 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=2 \\ y^{\prime }\left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.053 (sec). Leaf size: 9
ode:=2*t^2*diff(diff(y(t),t),t)+3*t*diff(y(t),t)-y(t) = 0; 
ic:=[y(1) = 2, D(y)(1) = 1]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = 2 \sqrt {t} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 12
ode=2*t^2*D[y[t],{t,2}]+3*t*D[y[t],t]-y[t]==0; 
ic={y[1]==2,Derivative[1][y][1] ==1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to 2 \sqrt {t} \end{align*}
Sympy. Time used: 0.106 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(2*t**2*Derivative(y(t), (t, 2)) + 3*t*Derivative(y(t), t) - y(t),0) 
ics = {y(1): 2, Subs(Derivative(y(t), t), t, 1): 1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = 2 \sqrt {t} \]