7.9.10 problem 13

Internal problem ID [2396]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 2.2.2, Equal roots, reduction of order. Page 147
Problem number : 13
Date solved : Tuesday, September 30, 2025 at 05:35:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 16
ode:=(t^2+1)*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+2*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_2 \,t^{2}+c_1 t -c_2 \]
Mathematica. Time used: 0.027 (sec). Leaf size: 21
ode=(1+t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+2*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to c_2 t-c_1 (t-i)^2 \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*t*Derivative(y(t), t) + (t**2 + 1)*Derivative(y(t), (t, 2)) + 2*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
False