Internal
problem
ID
[2412]
Book
:
Differential
equations
and
their
applications,
3rd
ed.,
M.
Braun
Section
:
Section
2.6,
Mechanical
Vibrations.
Page
171
Problem
number
:
13
Date
solved
:
Tuesday, September 30, 2025 at 05:35:32 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=m*diff(diff(y(t),t),t)+c*diff(y(t),t)+k*y(t) = F__0*cos(omega*t); dsolve(ode,y(t), singsol=all);
ode=m*D[y[t],{t,2}]+c*D[y[t],t]+k*y[t]==F0*Cos[\[Omega]*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") F__0 = symbols("F__0") c = symbols("c") k = symbols("k") m = symbols("m") omega = symbols("omega") y = Function("y") ode = Eq(-F__0*cos(omega*t) + c*Derivative(y(t), t) + k*y(t) + m*Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)