7.12.2 problem 2

Internal problem ID [2414]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 2.8, Series solutions. Page 195
Problem number : 2
Date solved : Tuesday, September 30, 2025 at 05:35:34 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} y^{\prime \prime }-t y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 29
Order:=6; 
ode:=diff(diff(y(t),t),t)-t*y(t) = 0; 
dsolve(ode,y(t),type='series',t=0);
 
\[ y = \left (1+\frac {t^{3}}{6}\right ) y \left (0\right )+\left (t +\frac {1}{12} t^{4}\right ) y^{\prime }\left (0\right )+O\left (t^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 28
ode=D[y[t],{t,2}]-t*y[t]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[t],{t,0,5}]
 
\[ y(t)\to c_2 \left (\frac {t^4}{12}+t\right )+c_1 \left (\frac {t^3}{6}+1\right ) \]
Sympy. Time used: 0.169 (sec). Leaf size: 24
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (t \right )} = C_{2} \left (\frac {t^{3}}{6} + 1\right ) + C_{1} t \left (\frac {t^{3}}{12} + 1\right ) + O\left (t^{6}\right ) \]