Internal
problem
ID
[2420]
Book
:
Differential
equations
and
their
applications,
3rd
ed.,
M.
Braun
Section
:
Section
2.8,
Series
solutions.
Page
195
Problem
number
:
8
Date
solved
:
Tuesday, September 30, 2025 at 05:35:37 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=diff(diff(y(t),t),t)+(t^2+2*t+1)*diff(y(t),t)-(4+4*t)*y(t) = 0; ic:=[y(-1) = 0, D(y)(-1) = 1]; dsolve([ode,op(ic)],y(t),type='series',t=-1);
ode=D[y[t],{t,2}]+(t^2+2*t+1)*D[y[t],t]-(4+4*t)*y[t]==0; ic={y[-1]==0,Derivative[1][y][-1]==1}; AsymptoticDSolveValue[{ode,ic},y[t],{t,-1,5}]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((-4*t - 4)*y(t) + (t**2 + 2*t + 1)*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(-1): 0, Subs(Derivative(y(t), t), t, -1): 1} dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_ordinary",x0=-1,n=6)