Internal
problem
ID
[2678]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
2.
Second
order
differential
equations.
Section
2.9,
The
method
of
Laplace
transform.
Excercises
page
232
Problem
number
:
24
Date
solved
:
Tuesday, September 30, 2025 at 05:49:23 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-3*diff(y(t),t)+2*y(t) = exp(-t); ic:=[y(t__0) = 1, D(y)(t__0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]-3*D[y[t],t]+2*y[t]==Exp[-t]; ic={y[t0]==0,Derivative[1][y][t0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*y(t) - 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(-t),0) ics = {y(t__0): 1, Derivative(y(t__0), t__0): 0} dsolve(ode,func=y(t),ics=ics)