Internal
problem
ID
[2776]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
3.
Systems
of
differential
equations.
Section
3.13
(Solving
systems
by
Laplace
transform).
Page
370
Problem
number
:
3
Date
solved
:
Tuesday, September 30, 2025 at 05:51:59 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 3*x__1(t)-2*x__2(t)+t, diff(x__2(t),t) = 2*x__1(t)-2*x__2(t)+3*exp(t)]; ic:=[x__1(0) = 2, x__2(0) = 1]; dsolve([ode,op(ic)]);
ode={D[x1[t],t]==3*x1[t]-2*x2[t]+t,D[ x2[t],t]==2*x1[t]-2*x2[t]+3*Exp[t]}; ic={x1[0]==2,x2[0]==1}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-t - 3*x__1(t) + 2*x__2(t) + Derivative(x__1(t), t),0),Eq(-2*x__1(t) + 2*x__2(t) - 3*exp(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)