9.4.10 problem 11

Internal problem ID [2923]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 8, page 34
Problem number : 11
Date solved : Tuesday, September 30, 2025 at 06:07:11 AM
CAS classification : [_exact]

\begin{align*} 3 y \sin \left (x \right )-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 17
ode:=3*sin(x)*y(x)-cos(y(x))+(x*sin(y(x))-3*cos(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ -3 \cos \left (x \right ) y-x \cos \left (y\right )+c_1 = 0 \]
Mathematica. Time used: 0.105 (sec). Leaf size: 18
ode=(3*y[x]*Sin[x]-Cos[y[x]])+(x*Sin[y[x]]-3*Cos[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}[x \cos (y(x))+3 y(x) \cos (x)=c_1,y(x)] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x*sin(y(x)) - 3*cos(x))*Derivative(y(x), x) + 3*y(x)*sin(x) - cos(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out