9.8.43 problem 45

Internal problem ID [3046]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 12, page 46
Problem number : 45
Date solved : Tuesday, September 30, 2025 at 06:25:31 AM
CAS classification : [_linear]

\begin{align*} x y^{\prime }&=x^{4}+4 y \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 10
ode:=x*diff(y(x),x) = x^4+4*y(x); 
ic:=[y(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \ln \left (x \right ) x^{4} \]
Mathematica. Time used: 0.019 (sec). Leaf size: 11
ode=x*D[y[x],x]==x^4+4*y[x]; 
ic={y[1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^4 \log (x) \end{align*}
Sympy. Time used: 0.103 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 + x*Derivative(y(x), x) - 4*y(x),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{4} \log {\left (x \right )} \]