9.18.5 problem 5

Internal problem ID [3248]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 35, page 157
Problem number : 5
Date solved : Tuesday, September 30, 2025 at 06:30:17 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} x^{\prime \prime }&=\frac {k^{2}}{x^{2}} \end{align*}
Maple. Time used: 0.037 (sec). Leaf size: 269
ode:=diff(diff(x(t),t),t) = k^2/x(t)^2; 
dsolve(ode,x(t), singsol=all);
 
\begin{align*} x &= \frac {c_1 \left (2 k^{2} c_1 +{\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4} k^{4}-2 \textit {\_Z} \,c_1^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) t \right )}+{\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4} k^{4}-2 \textit {\_Z} \,c_1^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) t \right )} c_1^{2} k^{4}\right )}{2} \\ x &= \frac {c_1 \left (2 k^{2} c_1 +{\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4} k^{4}-2 \textit {\_Z} \,c_1^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) t \right )}+{\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4} k^{4}-2 \textit {\_Z} \,c_1^{3} k^{2} {\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) t \right )} c_1^{2} k^{4}\right )}{2} \\ \end{align*}
Mathematica. Time used: 0.103 (sec). Leaf size: 71
ode=D[x[t],{t,2}]==k^2/x[t]^2; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left (\frac {2 k^2 \text {arctanh}\left (\frac {\sqrt {-\frac {2 k^2}{x(t)}+c_1}}{\sqrt {c_1}}\right )}{c_1{}^{3/2}}+\frac {x(t) \sqrt {-\frac {2 k^2}{x(t)}+c_1}}{c_1}\right ){}^2=(t+c_2){}^2,x(t)\right ] \]
Sympy. Time used: 1.433 (sec). Leaf size: 405
from sympy import * 
t = symbols("t") 
k = symbols("k") 
x = Function("x") 
ode = Eq(-k**2/x(t)**2 + Derivative(x(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ \left [ \begin {cases} - \frac {\sqrt {2} C_{1} k \sqrt {x{\left (t \right )}}}{\sqrt {\frac {C_{1} x{\left (t \right )}}{2 k^{2}} - 1}} + \frac {\sqrt {2} x^{\frac {3}{2}}{\left (t \right )}}{2 k \sqrt {\frac {C_{1} x{\left (t \right )}}{2 k^{2}} - 1}} + \frac {2 k^{2} \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {x{\left (t \right )}}}{2 k} \right )}}{C_{1}^{\frac {3}{2}}} & \text {for}\: \left |{\frac {C_{1} x{\left (t \right )}}{k^{2}}}\right | > 2 \\\frac {\sqrt {2} i C_{1} k \sqrt {x{\left (t \right )}}}{\sqrt {- \frac {C_{1} x{\left (t \right )}}{2 k^{2}} + 1}} - \frac {\sqrt {2} i x^{\frac {3}{2}}{\left (t \right )}}{2 k \sqrt {- \frac {C_{1} x{\left (t \right )}}{2 k^{2}} + 1}} - \frac {2 i k^{2} \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {x{\left (t \right )}}}{2 k} \right )}}{C_{1}^{\frac {3}{2}}} & \text {otherwise} \end {cases} = C_{1} + t, \ \begin {cases} - \frac {\sqrt {2} C_{1} k \sqrt {x{\left (t \right )}}}{\sqrt {\frac {C_{1} x{\left (t \right )}}{2 k^{2}} - 1}} + \frac {\sqrt {2} x^{\frac {3}{2}}{\left (t \right )}}{2 k \sqrt {\frac {C_{1} x{\left (t \right )}}{2 k^{2}} - 1}} + \frac {2 k^{2} \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {x{\left (t \right )}}}{2 k} \right )}}{C_{1}^{\frac {3}{2}}} & \text {for}\: \left |{\frac {C_{1} x{\left (t \right )}}{k^{2}}}\right | > 2 \\\frac {\sqrt {2} i C_{1} k \sqrt {x{\left (t \right )}}}{\sqrt {- \frac {C_{1} x{\left (t \right )}}{2 k^{2}} + 1}} - \frac {\sqrt {2} i x^{\frac {3}{2}}{\left (t \right )}}{2 k \sqrt {- \frac {C_{1} x{\left (t \right )}}{2 k^{2}} + 1}} - \frac {2 i k^{2} \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {x{\left (t \right )}}}{2 k} \right )}}{C_{1}^{\frac {3}{2}}} & \text {otherwise} \end {cases} = C_{1} - t\right ] \]