9.20.6 problem 6

Internal problem ID [3314]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 38, page 173
Problem number : 6
Date solved : Tuesday, September 30, 2025 at 06:35:55 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left ({y^{\prime }}^{2}+1\right ) y&=2 y^{\prime } x \end{align*}
Maple. Time used: 0.054 (sec). Leaf size: 67
ode:=y(x)*(1+diff(y(x),x)^2) = 2*x*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -x \\ y &= x \\ y &= 0 \\ y &= \sqrt {c_1 \left (-2 i x +c_1 \right )} \\ y &= \sqrt {c_1 \left (2 i x +c_1 \right )} \\ y &= -\sqrt {c_1 \left (-2 i x +c_1 \right )} \\ y &= -\sqrt {c_1 \left (2 i x +c_1 \right )} \\ \end{align*}
Mathematica. Time used: 0.636 (sec). Leaf size: 64
ode=(D[y[x],x]^2+1)*y[x]==2*D[y[x],x]*x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt {-e^{c_1} \left (-2 x+e^{c_1}\right )}\\ y(x)&\to \sqrt {-e^{c_1} \left (-2 x+e^{c_1}\right )}\\ y(x)&\to 0\\ y(x)&\to -x\\ y(x)&\to x \end{align*}
Sympy. Time used: 158.131 (sec). Leaf size: 469
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) + (Derivative(y(x), x)**2 + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{2}\right ] \]