11.5.4 problem 1.1-6 (d)

Internal problem ID [3437]
Book : Ordinary Differential Equations, Robert H. Martin, 1983
Section : Problem 1.1-6, page 7
Problem number : 1.1-6 (d)
Date solved : Tuesday, September 30, 2025 at 06:38:23 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=1-y^{2} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 8
ode:=diff(y(t),t) = 1-y(t)^2; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \tanh \left (t +c_1 \right ) \]
Mathematica. Time used: 0.346 (sec). Leaf size: 44
ode=D[y[t],t]==1-y[t]^2; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {e^{2 t}-e^{2 c_1}}{e^{2 t}+e^{2 c_1}}\\ y(t)&\to -1\\ y(t)&\to 1 \end{align*}
Sympy. Time used: 0.600 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t)**2 + Derivative(y(t), t) - 1,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \frac {1}{\tanh {\left (C_{1} - t \right )}} \]