11.6.6 problem 1.2-1 (f)

Internal problem ID [3443]
Book : Ordinary Differential Equations, Robert H. Martin, 1983
Section : Problem 1.2-1, page 12
Problem number : 1.2-1 (f)
Date solved : Tuesday, September 30, 2025 at 06:38:30 AM
CAS classification : [_linear]

\begin{align*} t y^{\prime }+2 y&=\sin \left (t \right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=t*diff(y(t),t)+2*y(t) = sin(t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {\sin \left (t \right )-\cos \left (t \right ) t +c_1}{t^{2}} \]
Mathematica. Time used: 0.024 (sec). Leaf size: 19
ode=t*D[y[t],t]+2*y[t]==Sin[t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {\sin (t)-t \cos (t)+c_1}{t^2} \end{align*}
Sympy. Time used: 0.200 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), t) + 2*y(t) - sin(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {\frac {C_{1}}{t} - \cos {\left (t \right )} + \frac {\sin {\left (t \right )}}{t}}{t} \]