Internal
problem
ID
[3568]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.2,
Basic
Ideas
and
Terminology.
page
21
Problem
number
:
Problem
17
Date
solved
:
Tuesday, September 30, 2025 at 06:45:48 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=2*x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 9*x^2; dsolve(ode,y(x), singsol=all);
ode=2*x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==9*x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*Derivative(y(x), (x, 2)) - 9*x**2 - x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)