14.2.2 problem Problem 2

Internal problem ID [3594]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43
Problem number : Problem 2
Date solved : Tuesday, September 30, 2025 at 06:47:58 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {y^{2}}{x^{2}+1} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 12
ode:=diff(y(x),x) = y(x)^2/(x^2+1); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{-\arctan \left (x \right )+c_1} \]
Mathematica. Time used: 0.109 (sec). Leaf size: 19
ode=D[y[x],x]==y[x]^2/(x^2+1); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{\arctan (x)+c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.108 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - y(x)**2/(x**2 + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {1}{C_{1} + \operatorname {atan}{\left (x \right )}} \]