Internal
problem
ID
[3630]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.6,
First-Order
Linear
Differential
Equations.
page
59
Problem
number
:
Problem
21
Date
solved
:
Tuesday, September 30, 2025 at 06:48:46 AM
CAS
classification
:
[[_linear, `class A`]]
With initial conditions
ode:=diff(y(x),x)-2*y(x) = piecewise(x < 1,1-x,1 <= x,0); ic:=[y(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x] - 2*y[x] == Piecewise[{{1-x, x < 1}, {0, x >= 1}}]; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-Piecewise((1 - x, x < 1), (0, True)) - 2*y(x) + Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)