14.4.28 problem Problem 44

Internal problem ID [3663]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number : Problem 44
Date solved : Tuesday, September 30, 2025 at 06:53:42 AM
CAS classification : [_rational, _Bernoulli]

\begin{align*} \left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right )&=2 \left (b -a \right ) y \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 55
ode:=(x-a)*(x-b)*(diff(y(x),x)-y(x)^(1/2)) = 2*(b-a)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {\left (-x +b \right ) \left (a -b \right ) \ln \left (x -b \right )+\left (2 a -2 x \right ) \sqrt {y}-\left (x +2 c_1 \right ) \left (-x +b \right )}{2 a -2 x} = 0 \]
Mathematica. Time used: 0.351 (sec). Leaf size: 43
ode=(x-a)*(x-b)*(D[y[x],x]-Sqrt[y[x]])==2*(b-a)*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {(b-x)^2 ((b-a) \log (x-b)+x+2 c_1){}^2}{4 (a-x)^2} \end{align*}
Sympy. Time used: 2.078 (sec). Leaf size: 352
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq((-a + x)*(-b + x)*(-sqrt(y(x)) + Derivative(y(x), x)) + (2*a - 2*b)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}^{2} b^{2} - 2 C_{1}^{2} b x + C_{1}^{2} x^{2} - C_{1} a b^{2} \log {\left (- b + x \right )} + 2 C_{1} a b x \log {\left (- b + x \right )} - C_{1} a x^{2} \log {\left (- b + x \right )} + C_{1} b^{3} \log {\left (- b + x \right )} - 2 C_{1} b^{2} x \log {\left (- b + x \right )} + C_{1} b^{2} x + C_{1} b x^{2} \log {\left (- b + x \right )} - 2 C_{1} b x^{2} + C_{1} x^{3} + \frac {a^{2} b^{2} \log {\left (- b + x \right )}^{2}}{4} - \frac {a^{2} b x \log {\left (- b + x \right )}^{2}}{2} + \frac {a^{2} x^{2} \log {\left (- b + x \right )}^{2}}{4} - \frac {a b^{3} \log {\left (- b + x \right )}^{2}}{2} + a b^{2} x \log {\left (- b + x \right )}^{2} - \frac {a b^{2} x \log {\left (- b + x \right )}}{2} - \frac {a b x^{2} \log {\left (- b + x \right )}^{2}}{2} + a b x^{2} \log {\left (- b + x \right )} - \frac {a x^{3} \log {\left (- b + x \right )}}{2} + \frac {b^{4} \log {\left (- b + x \right )}^{2}}{4} - \frac {b^{3} x \log {\left (- b + x \right )}^{2}}{2} + \frac {b^{3} x \log {\left (- b + x \right )}}{2} + \frac {b^{2} x^{2} \log {\left (- b + x \right )}^{2}}{4} - b^{2} x^{2} \log {\left (- b + x \right )} + \frac {b^{2} x^{2}}{4} + \frac {b x^{3} \log {\left (- b + x \right )}}{2} - \frac {b x^{3}}{2} + \frac {x^{4}}{4}}{a^{2} - 2 a x + x^{2}} \]