14.4.36 problem Problem 52

Internal problem ID [3671]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number : Problem 52
Date solved : Tuesday, September 30, 2025 at 06:54:48 AM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }+y \cot \left (x \right )&=y^{3} \sin \left (x \right )^{3} \end{align*}

With initial conditions

\begin{align*} y \left (\frac {\pi }{2}\right )&=1 \\ \end{align*}
Maple. Time used: 1.365 (sec). Leaf size: 34
ode:=diff(y(x),x)+y(x)*cot(x) = y(x)^3*sin(x)^3; 
ic:=[y(1/2*Pi) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {\sqrt {\left (2 \cos \left (x \right )-1\right )^{2} \left (2 \cos \left (x \right )+1\right )}\, \csc \left (x \right )}{-4 \cos \left (x \right )^{2}+1} \]
Mathematica. Time used: 0.779 (sec). Leaf size: 20
ode=D[y[x],x]+y[x]*Cot[x]==y[x]^3*Sin[x]^3; 
ic={y[Pi/2]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{\sqrt {\sin ^2(x) (2 \cos (x)+1)}} \end{align*}
Sympy. Time used: 0.550 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**3*sin(x)**3 + y(x)/tan(x) + Derivative(y(x), x),0) 
ics = {y(pi/2): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\sqrt {\frac {1}{2 \cos {\left (x \right )} + 1}}}{\sin {\left (x \right )}} \]