Internal
problem
ID
[3728]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.3,
The
Method
of
Undetermined
Coefficients.
page
525
Problem
number
:
Problem
38
Date
solved
:
Tuesday, September 30, 2025 at 06:56:25 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(t),t),t)+omega^2*y(t) = F__0/m*cos(omega*t); ic:=[y(0) = 1, D(y)(0) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,2}]+\[Omega]^2*y[t]==F0/m*Cos[\[Omega]*t]; ic={y[0]==1,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") F__0 = symbols("F__0") m = symbols("m") omega = symbols("omega") y = Function("y") ode = Eq(-F__0*cos(omega*t)/m + omega**2*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)