Internal
problem
ID
[3780]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.8,
A
Differential
Equation
with
Nonconstant
Coefficients.
page
567
Problem
number
:
Problem
21
Date
solved
:
Tuesday, September 30, 2025 at 06:57:18 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-(2*m-1)*x*diff(y(x),x)+m^2*y(x) = x^m*ln(x)^k; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-(2*m-1)*x*D[y[x],x]+m^2*y[x]==x^m*(Log[x])^k; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") k = symbols("k") m = symbols("m") y = Function("y") ode = Eq(m**2*y(x) + x**2*Derivative(y(x), (x, 2)) - x*(2*m - 1)*Derivative(y(x), x) - x**m*log(x)**k,0) ics = {} dsolve(ode,func=y(x),ics=ics)