14.12.14 problem Problem 33

Internal problem ID [3808]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number : Problem 33
Date solved : Tuesday, September 30, 2025 at 06:57:36 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)+y(x) = tan(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 -\cos \left (x \right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 23
ode=D[y[x],{x,2}]+y[x]==Tan[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (x) (-\text {arctanh}(\sin (x)))+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.198 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - tan(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \sin {\left (x \right )} + \left (C_{1} + \frac {\log {\left (\sin {\left (x \right )} - 1 \right )}}{2} - \frac {\log {\left (\sin {\left (x \right )} + 1 \right )}}{2}\right ) \cos {\left (x \right )} \]