14.13.1 problem 1

Internal problem ID [3810]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 9, First order linear systems. Section 9.1, page 587
Problem number : 1
Date solved : Tuesday, September 30, 2025 at 06:57:38 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=2 x_{1} \left (t \right )+x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=2 x_{1} \left (t \right )+3 x_{2} \left (t \right ) \end{align*}
Maple. Time used: 0.111 (sec). Leaf size: 31
ode:=[diff(x__1(t),t) = 2*x__1(t)+x__2(t), diff(x__2(t),t) = 2*x__1(t)+3*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{t}+c_2 \,{\mathrm e}^{4 t} \\ x_{2} \left (t \right ) &= -c_1 \,{\mathrm e}^{t}+2 c_2 \,{\mathrm e}^{4 t} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 67
ode={D[x1[t],t]==2*x1[t]+x2[t],D[x2[t],t]==2*x1[t]+3*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)&\to \frac {1}{3} e^t \left (c_1 \left (e^{3 t}+2\right )+c_2 \left (e^{3 t}-1\right )\right )\\ \text {x2}(t)&\to \frac {1}{3} e^t \left (2 c_1 \left (e^{3 t}-1\right )+c_2 \left (2 e^{3 t}+1\right )\right ) \end{align*}
Sympy. Time used: 0.049 (sec). Leaf size: 29
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-2*x__1(t) - x__2(t) + Derivative(x__1(t), t),0),Eq(-2*x__1(t) - 3*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - C_{1} e^{t} + \frac {C_{2} e^{4 t}}{2}, \ x^{2}{\left (t \right )} = C_{1} e^{t} + C_{2} e^{4 t}\right ] \]