Internal
problem
ID
[3869]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.5
(Defective
coefficient
matrix),
page
619
Problem
number
:
15
Date
solved
:
Tuesday, September 30, 2025 at 06:58:18 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -2*x__1(t)-x__2(t), diff(x__2(t),t) = x__1(t)-4*x__2(t)]; ic:=[x__1(0) = 0, x__2(0) = -1]; dsolve([ode,op(ic)]);
ode={D[x1[t],t]==-2*x1[t]-1*x2[t],D[x2[t],t]==1*x1[t]-4*x2[t]}; ic={x1[0]==0,x2[0]==-1}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(2*x__1(t) + x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + 4*x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)