14.20.18 problem 18

Internal problem ID [3908]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 9, First order linear systems. Section 9.11 (Chapter review), page 665
Problem number : 18
Date solved : Tuesday, September 30, 2025 at 06:58:55 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=3 x_{1} \left (t \right )-x_{2} \left (t \right )-2 x_{3} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )+6 x_{2} \left (t \right )+x_{3} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=x_{1} \left (t \right )+6 x_{3} \left (t \right ) \end{align*}
Maple. Time used: 0.123 (sec). Leaf size: 63
ode:=[diff(x__1(t),t) = 3*x__1(t)-x__2(t)-2*x__3(t), diff(x__2(t),t) = x__1(t)+6*x__2(t)+x__3(t), diff(x__3(t),t) = x__1(t)+6*x__3(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= -{\mathrm e}^{5 t} \left (c_3 \,t^{2}+c_2 t -2 c_3 t +c_1 -c_2 \right ) \\ x_{2} \left (t \right ) &= -{\mathrm e}^{5 t} \left (2 c_3 t +c_2 +2 c_3 \right ) \\ x_{3} \left (t \right ) &= {\mathrm e}^{5 t} \left (c_3 \,t^{2}+c_2 t +c_1 \right ) \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 98
ode={D[x1[t],t]==3*x1[t]-1*x2[t]-2*x3[t],D[x2[t],t]==1*x1[t]+6*x2[t]+1*x3[t],D[x3[t],t]==1*x1[t]+0*x2[t]+6*x3[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)&\to \frac {1}{2} e^{5 t} \left (c_1 \left (t^2-4 t+2\right )+c_2 (t-2) t+c_3 (t-4) t\right )\\ \text {x2}(t)&\to e^{5 t} ((c_1+c_2+c_3) t+c_2)\\ \text {x3}(t)&\to \frac {1}{2} e^{5 t} \left (-\left ((c_1+c_2+c_3) t^2\right )+2 (c_1+c_3) t+2 c_3\right ) \end{align*}
Sympy. Time used: 0.104 (sec). Leaf size: 87
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
x__3 = Function("x__3") 
ode=[Eq(-3*x__1(t) + x__2(t) + 2*x__3(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) - 6*x__2(t) - x__3(t) + Derivative(x__2(t), t),0),Eq(-x__1(t) - 6*x__3(t) + Derivative(x__3(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = \frac {C_{3} t^{2} e^{5 t}}{2} + t \left (C_{1} - 2 C_{3}\right ) e^{5 t} + \left (- 2 C_{1} + C_{2} + C_{3}\right ) e^{5 t}, \ x^{2}{\left (t \right )} = C_{1} e^{5 t} + C_{3} t e^{5 t}, \ x^{3}{\left (t \right )} = - \frac {C_{3} t^{2} e^{5 t}}{2} - t \left (C_{1} - C_{3}\right ) e^{5 t} + \left (C_{1} - C_{2}\right ) e^{5 t}\right ] \]