Internal
problem
ID
[3914]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.11
(Chapter
review),
page
665
Problem
number
:
24
Date
solved
:
Tuesday, September 30, 2025 at 06:59:00 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 7*x__1(t)-x__4(t), diff(x__2(t),t) = 6*x__2(t), diff(x__3(t),t) = -x__3(t), diff(x__4(t),t) = 2*x__1(t)+5*x__4(t)]; dsolve(ode);
ode={D[x1[t],t]==7*x1[t]+0*x2[t]-0*x3[t]-1*x4[t],D[x2[t],t]==0*x1[t]+6*x2[t]-0*x3[t]+0*x4[t],D[x3[t],t]==0*x1[t]+0*x2[t]-1*x3[t]+0*x4[t],D[x4[t],t]==2*x1[t]+0*x2[t]+0*x3[t]+5*x4[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") ode=[Eq(-7*x__1(t) + x__4(t) + Derivative(x__1(t), t),0),Eq(-6*x__2(t) + Derivative(x__2(t), t),0),Eq(x__3(t) + Derivative(x__3(t), t),0),Eq(-2*x__1(t) - 5*x__4(t) + Derivative(x__4(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)