Internal
problem
ID
[3982]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
10,
The
Laplace
Transform
and
Some
Elementary
Applications.
Exercises
for
10.8.
page
710
Problem
number
:
Problem
10
Date
solved
:
Tuesday, September 30, 2025 at 06:59:58 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+6*diff(y(t),t)+13*y(t) = Dirac(t-1/4*Pi); ic:=[y(0) = 5, D(y)(0) = 5]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+46*D[y[t],t]+13*y[t]==DiracDelta[t-Pi/4]; ic={y[0]==1,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Dirac(t - pi/4) + 13*y(t) + 6*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 5, Subs(Derivative(y(t), t), t, 0): 5} dsolve(ode,func=y(t),ics=ics)