14.25.9 problem 10

Internal problem ID [4014]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number : 10
Date solved : Tuesday, September 30, 2025 at 07:00:24 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 4 x^{2} y^{\prime \prime }+3 x y^{\prime }+x y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.032 (sec). Leaf size: 44
Order:=6; 
ode:=4*x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{{1}/{4}} \left (1-\frac {1}{5} x +\frac {1}{90} x^{2}-\frac {1}{3510} x^{3}+\frac {1}{238680} x^{4}-\frac {1}{25061400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (1-\frac {1}{3} x +\frac {1}{42} x^{2}-\frac {1}{1386} x^{3}+\frac {1}{83160} x^{4}-\frac {1}{7900200} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 85
ode=4*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+x*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \sqrt [4]{x} \left (-\frac {x^5}{25061400}+\frac {x^4}{238680}-\frac {x^3}{3510}+\frac {x^2}{90}-\frac {x}{5}+1\right )+c_2 \left (-\frac {x^5}{7900200}+\frac {x^4}{83160}-\frac {x^3}{1386}+\frac {x^2}{42}-\frac {x}{3}+1\right ) \]
Sympy. Time used: 0.342 (sec). Leaf size: 60
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + x*y(x) + 3*x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {x^{5}}{7900200} + \frac {x^{4}}{83160} - \frac {x^{3}}{1386} + \frac {x^{2}}{42} - \frac {x}{3} + 1\right ) + C_{1} \sqrt [4]{x} \left (\frac {x^{4}}{238680} - \frac {x^{3}}{3510} + \frac {x^{2}}{90} - \frac {x}{5} + 1\right ) + O\left (x^{6}\right ) \]