Internal
problem
ID
[4036]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.5.
page
771
Problem
number
:
3
Date
solved
:
Tuesday, September 30, 2025 at 07:00:45 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*diff(diff(y(x),x),x)+x*cos(x)*diff(y(x),x)-2*exp(x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]+x*Cos[x]*D[y[x],x]-2*Exp[x]*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*cos(x)*Derivative(y(x), x) - 2*y(x)*exp(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)