Internal
problem
ID
[4103]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
2.
First
order
equations.
Exercises
at
page
14
Problem
number
:
2(c)
Date
solved
:
Tuesday, September 30, 2025 at 07:02:52 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Riccati]
ode:=diff(y(x),x) = 1/2*(x^2+y(x)^2)/x^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(x^2+y[x]^2)/(2*x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**2 + y(x)**2)/(2*x**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)