Internal
problem
ID
[4115]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
2.
First
order
equations.
Exercises
at
page
14
Problem
number
:
2(o)
Date
solved
:
Tuesday, September 30, 2025 at 07:05:40 AM
CAS
classification
:
[_quadrature]
ode:=x+(2-x+2*y(x))*diff(y(x),x) = x*y(x)*(diff(y(x),x)-1); dsolve(ode,y(x), singsol=all);
ode=x+(2-x+2*y[x])*D[y[x],x]==x*y[x]*(D[y[x],x]-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(Derivative(y(x), x) - 1)*y(x) + x + (-x + 2*y(x) + 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)