Internal
problem
ID
[4177]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
6.
Linear
systems.
Exercises
at
page
110
Problem
number
:
11(c)
Date
solved
:
Tuesday, September 30, 2025 at 07:06:23 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(x),x) = y__2(x), diff(y__2(x),x) = -y__1(x)+y__3(x), diff(y__3(x),x) = -y__2(x)]; dsolve(ode);
ode={D[y1[x],x]==y2[x],D[y2[x],x]==-y1[x]+y3[x],D[y3[x],x]==-y2[x]}; ic={}; DSolve[{ode,ic},{y1[x],y2[x],y3[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") y__3 = Function("y__3") ode=[Eq(-y__2(x) + Derivative(y__1(x), x),0),Eq(y__1(x) - y__3(x) + Derivative(y__2(x), x),0),Eq(y__2(x) + Derivative(y__3(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x),y__3(x)],ics=ics)