Internal
problem
ID
[4223]
Book
:
Advanced
Mathematica,
Book2,
Perkin
and
Perkin,
1992
Section
:
Chapter
11.3,
page
316
Problem
number
:
11
Date
solved
:
Tuesday, September 30, 2025 at 07:07:41 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=x^2*diff(y(x),x)-y(x)^2 = 0; ic:=[y(1) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],x]-y[x]^2==0; ic=y[1]==-1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - y(x)**2,0) ics = {y(1): -1} dsolve(ode,func=y(x),ics=ics)